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ABSTRACT

The main objective of this work was to compare the curing and reversion (loss of
mechanical properties) characteristics of sulfur-cured guayule rubber with that of natural
rubber. A series of formulated natural and guayule rubber compounds was studied by em-
ploying Fourier transform infrared spectroscopy and mechanical spectroscopy to characterize
the cure and reversion behavior. The reversion process was found to be dependent on the
amount of trans-methine structure formed during and after vulcanization. The appearance
of this molecular species coincided with the onset of mechanical reversion.

Two variables affecting the cure and reversion process were studied: the amount of
carbon black loading, and the temperature of cure. It has been observed that reversion
and G'(max) are significantly affected by carbon black loading. An increase in carbon
black loading showed a decrease in reversion and an increase in G'(max). As the cure
temperature was increased, an increase in reversion was detected. In general, guayule
rubber exhibited a slower rate of reversion than natural rubber; however, natural rubber
exhibited a larger modulus than guayule rubber.
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INTRODUCTION

In recent years much interest has been shown in the cultivation deresination and process-
ing of the guayule shrub (Parthenium argentatum) to yield guayule rubber. The development
of guayule rubber as a domestic source of natural rubber is facilitated by the predictions that
the world will face a severe shortage of natural rubber by the end of the decade. This rea-
soning prompted comparisons between guayule rubber and natural rubber (Hevea brasiliensis).
The eventual goal is to replace, in certain instances, the imported natural rubber with its do-
mestic counterpart, guayule rubber.

The main objective of this work was to compare the reversion characteristics in the accel-
erated sulfur curing of guayule rubber with that of natural rubber. A series of formulated
natural rubber and guayule rubber compounds were studied using a sulfur accelerated curing
system. Quantitative studies of the compounding variables which affect the reversion process
have been investigated. A comparison between guayule and natural rubber has been carried
out and revealed that guayule rubber may serve to be more than an adequate replacement for
natural rubber.

If guayule rubber is to be treated as a genuine replacement for natural rubber it must
meet or surpass the physical properties previously measured for natural rubber. Therefore,
various compounding and physical property testing must be carried out to provide valuable
information on curing rates, optimum cure temperature, maximum storage modulus, and tensile
strength. 1-3

Limitations for any rubber system exist where higher curing rates at high temperatures
are usually not equivalent lo those obtained at longer cure times at lower temperatures. At
elevated temperatures this is usually manifested by a decrease in the dynamic storage modu-
lus. An even greater limitation results from the phenomenon known as reversion (a loss of
mechanical properties). Reversion is postulated to occur when the initially formed mono, di-,
and polysulfidic crosslinks4 degrade through a process known as desulfurization. When desul-
furization is faster than the crosslinking reaction, reversion occurs. 5,6 This causes physical
and mechanical properties such as tensile strength, stiffness, and tear resistance to deteriorate.

In order to produce a high quality compound, the effects pertaining to the amount of
accelerator, filler, and the selection of the proper curing system on the extent of reversion
should be addressed.

EXPERIMENTAL

Materials

Natural rubber (SMR-20) was used as the base material for all formulations with natural
rubber as its primary stock. This material was supplied by the Goodyear Tire and Rubber
Company of Akron, OH. The guayule rubber was obtained from the Firestone Tire and

1. KRAUS, G. Reinforcemem of Elastomems by Particulate Filar. Science a.ad Technology ot Rubber, ch. 8, F. R. Eirich, ed., 1978.
2. BLOW, C. M. Rubber Technology and Manufaciure. The Butterworlh Group, London, England, 1974.
3. GESSLER, A. M., HESS, W. M., and MEDALLA, A. 1. Plastics and Rubber Procesing, 1978.
4. SAVILLE, B., and WATSON, A. A. Soucatural Charactcizaaon of Sulfur-Vulcanized 1b4bber Networks. Rubber Chemical Technol., v. 40,

1967, p. 100.
5. HOFFMAN, W. Vulcanization Agents. MacLaren, London, England, 1967.
6. BLOKH, G. A. Organic Accelerators in ahe Vulcanization of Rubber. l1rael Program for Scientific Translations, LTD., 1968.



Rubber Company. This material was grown in Arizona and processed at the Firestone process-
ing facility in Sucaton, Arizona. The rubber was separated from the plant tissue by a series
of extractions with acetone.

The formulations used were made up of 100 parts rubber, two parts sulfur, two parts
Sanctocure (N-cyclohexyl-2-benzothiazyl-2-sulfcnamide), five parts Zinc Oxide, two parts stearic
acid, one part Agerite Resin D (poly (1,2-dihydro-2,2,4-trimethylquinoline)) and zero. 20, and
40 parts N 220 carbon black.

The formulated rubbers were prepared by mixing the ingredients in a Haake-Buchler
Rheocord System 40 internal mixer. The internal temperature remained constant at 800 C for
approximately 30 minutes. The rotor speed was 60 rpm. Samples were stored in the refriger-
ator when not in use to inhibit premature curing.

Characterization Techniques

A Rheometrics mechanical spectrometer model 7700 with rotational cone disks was used
to monitor G', the dynamic storage modules, a measure of the rubber elasticity or stiffness.
As the cure proceeds, G' increases with increasing network formation. The amount of rever-
sion can then be calculated with the equation:

% Reversion ={[G'(max) - G'(t)]/G'(max)} x 100 (1)

where G'(max) is the maximum dynamic storage modulus and G' is the dynamic storage modu-
lus of reversion following G'(max).

Samples were obtained using cast rubber films from toluene solution. Rubber samples
were dissolved in spectral grade toluene and deposited on a KBr salt plate. The solvent was
evaporated and another KBr salt plate was placed over the original one. The KBr sandwich
was then placed in an isothermally heated cell which remained at the prescribed temperature
for the entire cure process. Spectra were taken at various time intervals.

The infrared spectra were collected on a Perkin-Elmer Model 1550 Fourier transform
infrared spectrometer controlled by a Model 7500 Perkin-Elmer computer. The spectra were
then stored on 5-1/4 inch floppy disks for further data reduction.

A Waters ALC/GPC-244 instrument with a 600 A solvent delivery system, 660 solvent
programmer and 440 UV absorbance detector was used for GPC analysis.

Solutions were prepared by dissolving two grams of rubber into one liter of tetra-
hydrofuran. The resultant solution had a concentration of 0.20 g/dl.

RESULTS AND DISCUSSION

Gel Permeation Chromatography

The results from GPC reveal that the average MW for the guayule rubber sample was
approximately 800,000 6g/mol. The natural rubber gum stock used had an average MW of
approximately 2.5 x 10 g/mol. These MW values are relative to polystyrene standards.

2



Mechanical spectrometry

The major factor affecting the reversion of guayule rubber is the temperature at which
the cure is carried out. Figure 1 shows the mechanical spectrometer data for guayule rubber
at five different temperatures. The time to reach G'(max) is significantly decreased with
increasing temperature. Even the magnitude of G'(max) is affected by the cure temperature
as it decreases with increasing temperature. The vulcanizates cured at 130PC and 1400C
show no reversion, while reversion increases considerably with increasing temperature. In the
sample cured at 1300C, no reversion is detected even after two hours. Such extended cure
times are of no commercial use, so compromises must be reached where a maximum G' is
obtained in a minimum timeframe. This trend also holds true for the natural rubber curing
system studied.

loa
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Figure 1. Rheorneter cure curve for guayule rubber at five different temperatures.

Figure 2 shows a comparison of the cure curves from the mechanical spectrometer for
natural rubber and guayule rubber with 20 pphr carbon black at 150 0C. In general, both
rubbers show similar scorch times (time at which increase in G' is detected); however, the
maximum G' is greater for natural rubber than guayule rubber. This is probably indicative of
the previously existing crosslinks in the gum stock of the natural rubber.
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Figure 2. Comparison rheorater cure cunve for natural rubber and guayule rubber at 1500C.

After G'(max) is attained, a slow decrease in the modulus is detected. This is the onset
of the reversion process. Both natural rubber and guayule rubber exhibit reversion which is
attributed to the uncrosslinking of the S-S bonds formed during vulcanization. The natural
rubber sample exhibited 50% reversion after 60 minutes while the guayule rubber sample
exhibited 45% reversion.

Compounding additives play a major role in the curing chemistry of these rubbers. Of
particular interest is the amount of reinforcement obtained by the addition of carbon black.
Reinforcement is second only to vulcanization temperature as the most effective process used
to enhance the mechanical properties of rubber. An increase in reinforcement increases
stiffness, modulus, tear strength, and abrasion resistance.

Figure 3 shows a plot of In G'(max) versus carbon black loading for both guayule and
natural rubbers. The plots for both are linear with the guayule rubber showing a slightly
lower G'(max) at the lower carbon black loadings. However, at the higher carbon black
loadings, both show similar G'(max) values.

4
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The amount of reversion was found to be dependent on the carbon black concentration.
In fact, significant improvement can be seen in the reversion resistance of both rubbers when
carbon black is added. Figure 4 shows this improvement. Figure 4 also illustrates that the
% Reversion is not a linear function of black loading. The most significant reduction of the
reversion provided by carbon black occurs after the initial 10 pphr loading. More im-
portantly, Figure 4 demonstrates the fact that the guayule rubber exhibits less reversion at
all carbon black loading levels than natural rubber.

% REVERSION VS CARBON BLACK

z
V) NR

LhJ

L&J

NG GRR

355
0 10 20 30 40

BLACK LOADING (pphr)

Figure 4. Plot showing the Improvement in % Reverson versus carbon bleak
loading at 1500 C. Reversion calculated 60 minutes after G'(max) Is attained.
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Fourier Trnafortm kared Spedroscopy

The infrared spectra of carbon black filled natural rubber and guayule rubber as a
function of curing time is shown in Figures 5 and 6, respectively. These samples contain
20 pphr carbon black and were cured at 1500C.

NATURAL RUBBER

1.5 . . . . .. .. . . . . . . . . 1.5

965
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Figure 5. FT-PR spectra obtakied during the cure process for ratural ubber at 1.50C.

The initial spectra at time zero of the guayule rubber are identical to that of natural
rubber with the exception of a larger 1720 cm-1 band in the guayule rubber sample. This is at-
tributed to residual fatty acids that have not been completely extracted. As cure proceeds,
both rubber systems show significant spectral changes. The intensity of the 965 cm"t band
increases as does the band at 1637 cm"1 . These bands have previously been assigned7"9 to a
trans-methine structure. The band at 836 cm"1 decreases with cure time. This is assigned to
the C-H of the cis-methine. One can follow the change in intensity of these two bands as
cure proceeds. Initially, no trans-methine is formed. This band is not detected until approxi-
matelv seven minutes have passed.

7. CUNNEEN, J. I., HIGGINS, G. M. C., and WILKES. R. A. Cis-Trans 4L ,'wtan in Poliyipmwme Part WVI, Doubk Bond Mo'rment
Dieni te ic wmizadon of Naftl Rubber and Rdated Oklefml J. Polwn. Sci., v. A31•,A p. 3501

8. ZBINDEN, R. infrv'd Spw.oaq of Higf PoJfwnem Academic Prea New York. NY, 1964, p. 22.
9. CHEN. C. H., KOENIG, J. L, SHELTON, J. R., and COLLINS, E A. A-he Inflaence of Carbon Black on the Retrron Noce= in

Suljfr.Acelerated Vulcanizad of Naned Rubber. Rubber Chem. Technol., v. 54, 1982, p. 103.
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GUAYULE RUBBER
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F"gr 6. FTAIR spectra obwnok dudng the cure procas for "ule. rubber at 150°C,

- Figure 7 plots the appearance of the 965 cm-1 and the decrease of the 836 cm"! bands.
The curves appear to have similar shapes and exist as mirror images of one another. This
effect is consistent with a concerted type reaction; i.e., when one structure leaves, the other
appears.

The data from the mechanical spectrometer for the guayule sample are shown in
Figure 8. The storage modulus G', a measure of rubber elasticity, shows a sharp increase as
cure time proceeds. The G' value reaches a maximum and then slowly decreases. This por-
tion of the curve with decreasing modulus is the effect of reversion. The appearance of the
trans-methine structure at 965 cm"n from the infrared spectra is shown on the same graph.
From this plot it can be seen that the trans-methine content becomes detectable at approxi-
mately the same time as the mechanical reversion begins. This result clearly indicates that
the changes occurring in the infrared spectra ;;re due entirely to the reversion process and
not to the vulcanization process. In fact, no changes are detected in the IR spectra during
the vulcanization process. Both natural rubber and guayule rubber exhibit this effect.

7



IR KINETIC CHANGES FOR GUAYULE RUBBER
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Figure 7. Plot of IR spectral changes during the mechanical
reversion process of guatyule rubbier at 1 5O'f.
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Figure 8. Graph showing the relationship between the mechanical and
AR spectra for 20 pphr carbon black filled guayule rubber at 1 500C.
The Intensity of the 965 cm'l Is a measure df the appearance of the
trans-methlne structure.
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CONCLUSION

Studies have been done on a series of natural rubber and guayule rubber compounds by
employing Fourier transform infrared spectroscopy and dynamic mechanical analysis to charac-
terize the cure and reversion behavior. The reversion process was found to bc dependent on
the amount of trans-methine structure formed during and after vulcanization. The appearance
of these species coincided with the onset of mechanical reversion.

Two variables affecting cure and reversion have been studied: the amount of carbon
black loading, and temperature of cure. It has been observed that reversion and G'(max)
were significantly affected by carbon black loading. An increase in loading showed a decrease
in reversion and an increase in G'(max). As the cure temperature was increased, an increase
in the reversion process was also observed. For all samples studied, natural rubber exhibited
more of a tendency to undergo reversion than identically formulated and cured guayule rub-
ber samples.
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